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Introductory Information

Keywords: Fairness; Clustering; Unsupervised learning
Duration: Half-day (4 hours)
Expected Participants: 150 (if in person); more (if virtual)
History of Tutorial: This is a new tutorial.

Goal of the Tutorial
Clustering problems are fundamental in areas ranging from
Unsupervised Learning and Operations Research, to Data
Mining and Optimization. Even more importantly, due to the
numerous practical applications of this family of problems,
algorithms developed for them are employed on a daily ba-
sis in settings affecting the lives of millions of individuals.
Because of this, a flurry of research has emerged on guaran-
teeing that the aforementioned clustering problems will ex-
plicitly take into account the issue of fairness, thus providing
socially just solutions. This research endeavour has led to a
vast collection of results, where multiple and often unrelated
or conflicting definitions of fairness are considered.

The goal of this tutorial is to introduce a wide audience in-
terested in algorithmic fairness to the nascent research area
of fair clustering. Specifically, we wish to present a variety
of fairness notions used in the context of clustering, argue
about the necessity of each of those through corresponding
applications, discuss the relationships between different no-
tions, sketch the algorithmic ideas that were developed in
order to address the corresponding computational problems,
and finally share our thoughts about the future of research
in algorithmic fairness. By the end of the tutorial, the audi-
ence will have achieved a significant level of familiarity with
multiple definitions of fairness in the unsupervised learning
context, and we hope that researchers will use these ideas in
contexts both within and adjacent to the clustering context,
in both industrial and academic applications.

Brief Outline of the Tutorial
We will begin the tutorial by formally introducing standard
variants of clustering problems. Moving on, we will discuss
applications in which unfairness may naturally arise, and for
each such application we will discuss the corresponding no-
tion of fairness that was introduced in order to mitigate the
aforementioned situation. Furthermore, we will sketch the

high-level algorithmic ideas that were developed in order to
solve each corresponding fair clustering problem. However,
we plan on putting more emphasis on presenting the actual
mathematical definitions of fairness, and not on the algorith-
mic aspects of the results. The reason for this is that we want
to expose the audience to as many notions of fairness as pos-
sible, while discussing the necessity of each of them and the
relationships between them. The last section of the tutorial
will involve a broader discussion of the future of research in
algorithmic fairness, by proposing specific directions.

Prerequisite Knowledge
We will cater our tutorial to the modal junior participant
(e.g., an early-stage PhD student or similar). That is, we will
assume the audience has a basic CS and AI/ML background,
but not necessarily deep clustering experience. Specifically,
any participant who has had an undergraduate- or early
graduate-level Algorithms and Machine Learning course
will be able to follow the entirety of the tutorial. This is be-
cause, as mentioned earlier, the emphasis will be put into the
definitions of fairness and their corresponding relationships,
and relatively less on the algorithmic aspects of (traditional,
constrainted, and/or fair) clustering.

Content
The first part of the tutorial will consist of introducing classi-
cal clustering paradigms, together with appropriate applica-
tions for each of them. These paradigms define what we call
the unfair clustering problem, where fairness is not part of
the computational problem. The unfair clustering problems
we will discuss are well-studied and longstanding, however
we will only need their definitions and not algorithmic re-
sults on them. Specifically, in the first part of the tutorial we
will present the formal definitions for:
• Metric k-clustering: k-center, k-median and k-means.
• Clustering with outliers.
• Hierarchical clustering.
• Correlation clustering.

In the second part of the tutorial we will start discussing
specific notions of fairness for clustering, and we will see
how these are incorporated in the classical/unfair models.



For each such notion we will present realistic applications
demonstrating its importance. One of the biggest take-home
messages of our tutorial will be that these different defini-
tions of fairness are equally important and they are intro-
duced in order to capture different and unique scenarios. In
addition, besides simply enumerating different concepts of
fairness, we will present a more structured taxonomy. The
full list of the work we are going to cover can be found in
the References section below.

The third part of the tutorial will revolve around some
of the main algorithmic techniques that were developed in
order to tackle fair clustering problems. Our description of
those will be on a high-level, nonetheless we would still like
to make the audience aware of the kind of approaches that
have been used throughout the literature. Examples of tech-
niques we want to cover include the widely-used two-step
approach of (Bercea et al. 2019; Bera et al. 2019), the fair-
let decomposition of (Chierichetti et al. 2017), and network-
flow roundings such as those in (Bercea et al. 2019).

The final part of the tutorial will feature a discussion
of where fair clustering and the broader field of algorith-
mic fairness is going. We will explore important questions,
criticisms, and developing norms in this growing research
area. Emphasis will be placed on connecting foundational
research in fair clustering more closely to real applications
and communities served. This discussion will conclude with
exciting future directions and open problems.
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