
Individual Fairness in 
Clustering



High-Level Motivation
 Demographic Fairness: Treat each group of points fairly, with respect to how other groups are being 
treated or with respect to the specific needs of the group at hand.

 Individual Fairness: Treat each individual point fairly, with respect to how other points are being treated 
or with respect to its specific needs.

Does demographic fairness imply individual fairness?
 View each point as a singleton group.
 The concepts of group fairness become vague or ill-defined in this case:
 Balance: Leads to a single cluster solution 
 Proportionality: Each point is entitled to each its own cluster?
 Socially fair k-clustering: Reduces to k-center

 Demographic fairness cannot adequately capture any individual needs of points.



The Seminal Work of Dwork et al.
 A very important work in the area of Individual Fairness

 Dwork et al. (“Fairness Through Awareness” – ITCS 2012) introduced a ground breaking 
concept of individual fairness in the context of classification.

Similar individuals should be treated similarly

 It will help us in our taxonomy of individually fair notions for clustering
1) Definitions that follow the Dwork et al. paradigm
2) Definitions that diverge from it



Individually-Fair Clustering 
Models that Follow the 
Dwork et al. Paradigm



The Dwork et al. Paradigm in Clustering

Similar individuals should be treated similarly

 Two questions that need to be answered:
1) How can we define similarity in the context of clustering?
2) What constitutes similar treatment in a clustering setting?

 The first question is not really important. 

 The second question is of much more significance.



Similar treatment in terms of same 
cluster placement
Motivational Example:
 Suppose a company wants to cluster its employees into k groups
 People in the first cluster will receive the highest amount of raise, the people in the second 

cluster the second highest raise, and so on.
 Suppose that employee X is very similar to employee Y.
 If Y is placed in a cluster that receives a better amount of raise, then X would arguably feel 

unfairly treated.

 In such cases, similar points should be placed in the same cluster



Probabilistic Pairwise Fairness –
Definition of Similarity
 Introduced by Brubach et al. (“A Pairwise Fair and Community-preserving 
Approach to k-Center Clustering” – ICML 2020)

 Definition of similarity:
 For every pair of points 𝑗𝑗, 𝑗𝑗′ ∈ 𝒞𝒞 we are given a value 𝜓𝜓𝑗𝑗,𝑗𝑗′ ∈ [0,1] indicating their true 

similarity.
 The smaller 𝜓𝜓𝑗𝑗,𝑗𝑗′ is the more similar the two points.

 The values 𝜓𝜓 can be different from the metric 𝑑𝑑:
1) Encoding of redundant features in 𝑑𝑑
2) ψ can be the similarity as perceived by the individuals



Probabilistic Pairwise Fairness –
Definition of Similar Treatment
 How can we mitigate unfair behavior?

 Avoid situations where two similar points are deterministically separated

Randomization can imply fairness

 Seek a randomized solution that separates 𝑗𝑗, 𝑗𝑗𝑗 with probability at most 𝜓𝜓𝑗𝑗,𝑗𝑗′
 Choose 𝑆𝑆 with 𝑆𝑆 ≤ 𝑘𝑘
 Construct efficiently sampleable distribution 𝒟𝒟 over assignments 𝜑𝜑:𝒞𝒞 → 𝑆𝑆 such that

Pr
φ~𝒟𝒟

[𝜑𝜑 𝑗𝑗 ≠ 𝜑𝜑(𝑗𝑗′)] ≤ 𝜓𝜓𝑗𝑗,𝑗𝑗′

Minimize some metric related objective



Probabilistic Pairwise Fairness - Results
 Brubach et al. (“A Pairwise Fair and Community-preserving Approach to k-Center Clustering” –
ICML 2020) introduced the problem and gave a 𝑙𝑙𝑙𝑙𝑙𝑙𝑘𝑘-approximation algorithm for the k-center 
objective.

 The algorithm works when 𝜓𝜓𝑗𝑗,𝑗𝑗′ = {𝑑𝑑 𝑗𝑗,𝑗𝑗′

𝑅𝑅
, 1} , for some 𝑅𝑅 > 0.

 Very efficient algorithm
 Bounded PoF

 Brubach et al. (“Fairness, Semi-Supervised Learning, and More: A General Framework for 
Clustering with Stochastic Pairwise Constraints” – AAAI 2021) gave constant factor 
approximations for all k-center, k-median and k-means
 The values 𝜓𝜓𝑗𝑗,𝑗𝑗′ are arbitrary
 Not that efficient – LP based



Distributional Individual Fairness
 Introduced by Anderson et al. (“Distributional Individual Fairness in Clustering” – Arxiv 2020).

 Similarity defined exactly as in Brubach et al. That is with values 𝜓𝜓𝑗𝑗,𝑗𝑗′

 Pick 𝑆𝑆 ⊆ 𝒞𝒞 with 𝑆𝑆 ≤ 𝑘𝑘
 For each 𝑗𝑗 ∈ 𝒞𝒞 find distribution 𝜑𝜑𝑗𝑗 over 𝑆𝑆
 Fairness constraint:
Metric 𝐷𝐷 measuring statistical proximity
 𝐷𝐷 𝜑𝜑𝑗𝑗 ,𝜑𝜑𝑗𝑗′ ≤ 𝜓𝜓𝑗𝑗,𝑗𝑗′

 Difference with the model of Brubach et al.
 Brubach et al. return an actual assignment 𝜑𝜑:𝒞𝒞 → 𝑆𝑆
 Brubach et al. upper bound the separation probability 
 Example: For 𝑗𝑗, 𝑗𝑗𝑗 both 𝜑𝜑𝑗𝑗 and 𝜑𝜑𝑗𝑗′ are the uniform distribution over 𝑆𝑆

 Anderson et al. give constant factor approximation algorithms for all k-center, k-median and k-means



Similar Treatment is 
Terms of the 
Assignment Distance
 In many applications the 

quantity 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗
(assignment distance) is what 
really matters
 Clustering: It measures 

how representative 𝜑𝜑 𝑗𝑗
is for 𝑗𝑗.

 Facility Location: It 
represents the distance 𝑗𝑗
needs to travel in order to 
reach its service provider 
𝜑𝜑 𝑗𝑗 .

 The smaller 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 is the 
more satisfied the point 𝑗𝑗.

 Suppose 𝑗𝑗𝑗 is similar to 𝑗𝑗 and 
𝑑𝑑 𝑗𝑗′,𝜑𝜑 𝑗𝑗′ ≪ 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 .

𝑗𝑗 is justified to feel unfairly 
treated



Motivational Example
 The points of 𝒞𝒞 correspond to users of an e-commerce site. 

 𝑑𝑑(𝑗𝑗, 𝑗𝑗𝑗) measures how similar the profiles of 𝑗𝑗 and 𝑗𝑗𝑗 are.

 The website wants to choose 𝑘𝑘 representative users 𝑆𝑆 ⊆ 𝒞𝒞 (according to some objective 
function) and construct an assignment 𝜑𝜑:𝒞𝒞 → 𝑆𝑆.

 User 𝑗𝑗 will receive recommendations based on 𝜑𝜑(𝑗𝑗)’s profile.

 The smaller 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 is the more relevant the recommendations 𝑗𝑗 receives.

 If 𝑗𝑗 considers 𝑗𝑗𝑗 as similar to itself, then it perceives 𝑑𝑑 𝑗𝑗′,𝜑𝜑 𝑗𝑗′ ≪ 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 as unfair 
treatment.



α-Equitable k-Center
 Introduced by Chakrabarti et al. (“A New Notion of Individually Fair Clustering: α-Equitable 
k-Center” – AISTATS 2022)
 Every point 𝑗𝑗 has a set of other points 𝒮𝒮𝑗𝑗 ⊆ 𝒞𝒞 that it perceives as similar to itself
 This is how similarity is modeled in this work
 Has advantages over the modeling with the 𝜓𝜓 values: more easily constructable

We are also given a value 𝛼𝛼 ≥ 1.
 Ask for 𝑆𝑆 ⊆ 𝒞𝒞 ( 𝑆𝑆 ≤ 𝑘𝑘) and assignment 𝜑𝜑:𝒞𝒞 → 𝑆𝑆 that minimize the k-center objective 
max
𝑗𝑗∈𝒞𝒞

𝑑𝑑(𝑗𝑗,𝜑𝜑(𝑗𝑗)) .

 Fairness Constraint: For every 𝑗𝑗 ∈ 𝒞𝒞 and 𝑗𝑗𝑗 ∈ 𝒮𝒮𝑗𝑗 ensure that 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 ≤ 𝛼𝛼 � 𝑑𝑑 𝑗𝑗′,𝜑𝜑 𝑗𝑗′
 The smaller α is the smaller 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗

𝑑𝑑 𝑗𝑗′,𝜑𝜑 𝑗𝑗′
remains



The parameter α
 The smaller α is the smaller 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗

𝑑𝑑 𝑗𝑗′,𝜑𝜑 𝑗𝑗′
remains.
 α = 4
 α = 1

 A value of α close to 1 would give the most 
equitable/fair solution

 For what values of α is the problem well-
defined?
 For 𝑎𝑎 < 2 there exist instances that admit no 

feasible solution
 For 𝑎𝑎 ≥ 2 we can always find a feasible solution



The results of Chakrabarti et al. 
 A very efficient algorithms that returns a solution of cost 5 𝑅𝑅∗ + 𝑅𝑅𝑚𝑚
 𝑅𝑅∗ is the value of the optimal solution
 𝑅𝑅𝑚𝑚 = max

𝑗𝑗∈𝒞𝒞,𝑗𝑗′∈𝒮𝒮𝑗𝑗
𝑑𝑑(𝑗𝑗, 𝑗𝑗𝑗)

When 𝑑𝑑 is a good estimate of similarity: 𝑅𝑅𝑚𝑚 = 𝑂𝑂(𝑅𝑅∗)

 Under some mild conditions on the sets 𝒮𝒮𝑗𝑗 the algorithm has bounded PoF



Notions of Individual 
Fairness in Clustering that 
do not follow the Dwork et 
al. paradigm



A Center in my Neighborhood
 Suppose we want to solve a classical k-
clustering problem on a set of points 𝒞𝒞
Find 𝑆𝑆⊆𝒞𝒞 (|𝑆𝑆|≤𝑘𝑘) and assignment 𝜑𝜑:𝒞𝒞→𝑆𝑆 that 
∑𝑗𝑗∈𝒞𝒞 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 𝑝𝑝

is minimized

 Even though the global objective function might 
be minimized, individual points may have 
different requirement in terms of 𝑑𝑑(𝑗𝑗,𝜑𝜑(𝑗𝑗))
Recall the vaccine site allocation example. 

Each 𝑗𝑗 has a value 𝑟𝑟𝑗𝑗, and we should make sure 
that 𝑑𝑑(𝑗𝑗,𝜑𝜑(𝑗𝑗))≤ 𝑟𝑟𝑗𝑗



Results
 Jung et al. (“A Center in Your Neighborhood: Fairness in Facility Location” – FORC 2020) 
introduced the problem
 Important result: Even finding a feasible solution to the problem is NP-hard.

 Goal: Find 𝛼𝛼,𝛽𝛽 -bicriteria algorithms:
 ∑𝑗𝑗∈𝒞𝒞 𝑑𝑑 𝑗𝑗,𝜑𝜑 𝑗𝑗 𝑝𝑝 ≤ 𝛼𝛼 � OPT
 𝑑𝑑(𝑗𝑗,𝜑𝜑(𝑗𝑗))≤ 𝛽𝛽 � 𝑟𝑟𝑗𝑗 for every 𝑗𝑗

 A series of papers gave increasingly better results:
1) Mahabadi and Vakilian (“Individual Fairness for k-Clustering”- ICML 2020). (𝑂𝑂 𝑝𝑝 , 7)-bicriteria
2) Chakrabarty and Negahbani (“Better Algorithms for Individually Fair k-Clustering” – NeurIPS 2021) 

(21+
2
𝑝𝑝, 8)-bicriteria

3) Vakilian and Yalçıner (“Improved Approximation Algorithms for Individually Fair Clustering” – AISTATS 
2022) (16𝑝𝑝, 3)-bicriteria



Individual Fairness in Clustering with 
Outliers
Pick 𝑆𝑆 ⊆ 𝒞𝒞 with 𝑆𝑆 ≤ 𝑘𝑘
Pick 𝒜𝒜 ⊆ 𝒞𝒞 with 𝒜𝒜 ≥ 𝑚𝑚 (points to be clustered)
Being an outlier is disadvantageous!!!
We have seen how to protect against demographic bias
What can be interpreted as bias against individuals?

Deterministically be chosen as an outlier in every computed 
solution



Randomization saves the day: A lottery model 
for individually fair clustering with outliers
 For each 𝑗𝑗 ∈ 𝒞𝒞 we are given a value 𝑝𝑝𝑗𝑗 ∈ [0,1]

We want a distribution 𝒟𝒟 over solutions (𝑆𝑆,𝒜𝒜) such that:
1) For every (𝑆𝑆,𝒜𝒜) drawn from 𝒟𝒟 we have S ≤ k and 𝒜𝒜 ≥ 𝑚𝑚.
2) Pr

S,𝒜𝒜 ~𝒟𝒟
j ∈ 𝒜𝒜 ≥ pj for every j ∈ 𝒞𝒞

3) Some objective is minimized

We avoid scenarios where certain points are deterministically chosen as outliers

Through the values 𝑝𝑝𝑗𝑗 we can capture a plethora of fairness concepts:
 Equitable treatment: 𝑝𝑝𝑗𝑗 is the same for all points
 Preferential treatment: Points in greater need of service get a higher 𝑝𝑝𝑗𝑗 value



Results
 The problem has only been studied under the k-center objective.

 It was introduced by Harris et al. (“A Lottery Model for Center-Type Problems With Outliers” –
APPROX-RANDOM 2017)

 Harris et al. gave a pseudo 2-approximation algorithm. 
 In every solution drawn from 𝒟𝒟 the coverage guarantee is 1 − 𝜀𝜀 𝑚𝑚
 Pr

S,𝒜𝒜 ~𝒟𝒟
j ∈ 𝒜𝒜 ≥ (1 − 𝜀𝜀)pj

 Anegg et al. (“A Technique for Obtaining True Approximations for k-Center with Covering 
Constraints” – IPCO 2020) gave a true 4-approximation algorithm.



Fairness based on average distance to 
the points in your cluster
Motivational Example:
 Suppose a company wants to cluster its 

employees into k groups, based on their 
performance rating for some specific year.
 Let’s assume that people in the first cluster 

will receive the highest amount of raise, the 
people in the second cluster the second 
highest raise, and so on.
 Consider some employee X placed in some 

cluster C. Let 𝐶𝐶𝑋𝑋 be the average distance of X 
to the rest of the points in C.
 If there exists cluster W, with 𝑊𝑊𝑋𝑋 be the 

average distance of X to the of the points in 
W, such that 𝑊𝑊𝑋𝑋 ≤ 𝐶𝐶𝑋𝑋, then X would arguably 
feel unfairly treated



Formal Definition and Results
 Given a set of points 𝒞𝒞, partition it into 𝑘𝑘 sets 𝒞𝒞1, … ,𝒞𝒞𝑘𝑘 such that:
 For every 𝑖𝑖 ∈ 𝑘𝑘 and each j ∈ 𝒞𝒞𝑖𝑖 ,

1
𝒞𝒞𝑖𝑖 −1

∑𝑗𝑗′∈𝒞𝒞𝑖𝑖 𝑑𝑑(𝑗𝑗, 𝑗𝑗𝑗) ≤ 1
𝒞𝒞𝑖𝑖′

∑𝑗𝑗′∈𝒞𝒞𝑖𝑖′ 𝑑𝑑(𝑗𝑗, 𝑗𝑗𝑗) for all 𝑖𝑖′ ≠ 𝑖𝑖

 The problem was introduced by Kleindessner et al. (“A Notion of Individual Fairness for 
Clustering” – Arxiv 2020).

Main result: For 𝑘𝑘 ≥ 2, it is NP-hard to decide if such a clustering exists

When the metric space is the Euclidean line, the problem can be solved efficiently.
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