Individual Fairness in Clustering

High-Level Motivation

Demographic Fairness: Treat each group of points fairly, with respect to how other groups are being treated or with respect to the specific needs of the group at hand.

Individual Fairness: Treat each individual point fairly, with respect to how other points are being treated or with respect to its specific needs.

- Does demographic fairness imply individual fairness?
 - View each point as a singleton group.
 - The concepts of group fairness become vague or ill-defined in this case:
 - Balance: Leads to a single cluster solution
 - Proportionality: Each point is entitled to each its own cluster?
 - Socially fair k-clustering: Reduces to k-center
- > Demographic fairness cannot adequately capture any individual needs of points.

The Seminal Work of Dwork et al.

> A very important work in the area of Individual Fairness

Dwork et al. ("Fairness Through Awareness" – ITCS 2012) introduced a ground breaking concept of individual fairness in the context of classification.

Similar individuals should be treated similarly

> It will help us in our taxonomy of individually fair notions for clustering

- 1) Definitions that follow the Dwork et al. paradigm
- 2) Definitions that diverge from it

Individually-Fair Clustering Models that Follow the Dwork et al. Paradigm

The Dwork et al. Paradigm in Clustering

Similar individuals should be treated similarly

- > Two questions that need to be answered:
 - 1) How can we define similarity in the context of clustering?
 - 2) What constitutes similar treatment in a clustering setting?
- > The first question is not really important.
- > The second question is of much more significance.

Similar treatment in terms of same cluster placement

Motivational Example:

- Suppose a company wants to cluster its employees into k groups
- People in the first cluster will receive the highest amount of raise, the people in the second cluster the second highest raise, and so on.
- Suppose that employee X is very similar to employee Y.
- If Y is placed in a cluster that receives a better amount of raise, then X would arguably feel unfairly treated.

> In such cases, similar points should be placed in the same cluster

Probabilistic Pairwise Fairness – Definition of Similarity

Introduced by Brubach et al. ("A Pairwise Fair and Community-preserving Approach to k-Center Clustering" – ICML 2020)

> Definition of similarity:

- ★ For every pair of points $j, j' \in C$ we are given a value $\psi_{j,j'} \in [0,1]$ indicating their true similarity.
- The smaller $\psi_{i,i'}$ is the more similar the two points.
- \succ The values ψ can be different from the metric d:
 - 1) Encoding of redundant features in *d*
 - 2) ψ can be the similarity as perceived by the individuals

Probabilistic Pairwise Fairness – Definition of Similar Treatment

How can we mitigate unfair behavior?

> Avoid situations where two similar points are deterministically separated

Randomization can imply fairness

Seek a randomized solution that separates j, j' with probability at most $\psi_{j,j'}$ Choose S with $|S| \le k$

♦ Construct efficiently sampleable distribution \mathcal{D} over assignments $\varphi : \mathcal{C} \to S$ such that

$$\Pr_{\rho \sim \mathcal{D}}[\varphi(j) \neq \varphi(j')] \leq \psi_{j,j'}$$

Minimize some metric related objective

Probabilistic Pairwise Fairness - Results

Brubach et al. ("A Pairwise Fair and Community-preserving Approach to k-Center Clustering" – ICML 2020) introduced the problem and gave a *logk*-approximation algorithm for the k-center objective.

- The algorithm works when $\psi_{j,j'} = \{\frac{d(j,j')}{R}, 1\}$, for some R > 0.
- Very efficient algorithm
- Bounded PoF

Brubach et al. ("Fairness, Semi-Supervised Learning, and More: A General Framework for Clustering with Stochastic Pairwise Constraints" – AAAI 2021) gave constant factor approximations for all k-center, k-median and k-means

The values $\psi_{j,j'}$ are arbitrary

Not that efficient – LP based

Distributional Individual Fairness

- Introduced by Anderson et al. ("Distributional Individual Fairness in Clustering" Arxiv 2020).
- > Similarity defined exactly as in Brubach et al. That is with values $\psi_{j,j'}$
- $\succ \operatorname{Pick} S \subseteq \mathcal{C} \text{ with } |S| \leq k$
- ▶ For each $j \in C$ find distribution φ_j over S
- Fairness constraint:
 Metric D measuring statistical proximity $D(\varphi_i, \varphi_{i'}) \leq \psi_{i,i'}$
- > Difference with the model of Brubach et al.
 - ♦ Brubach et al. return an actual assignment φ : $C \rightarrow S$
 - Brubach et al. upper bound the separation probability
 - ***** Example: For j, j' both φ_j and $\varphi_{j'}$ are the uniform distribution over *S*

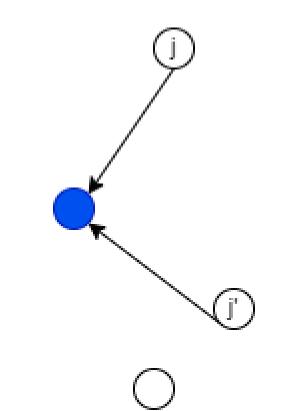
> Anderson et al. give constant factor approximation algorithms for all k-center, k-median and k-means

Similar Treatment is Terms of the Assignment Distance

- > In many applications the quantity $d(j, \varphi(j))$ (assignment distance) is what really matters
 - Clustering: It measures how representative $\varphi(j)$ is for *j*.
 - Facility Location: It represents the distance j needs to travel in order to reach its service provider φ(j).
- > The smaller $d(j, \varphi(j))$ is the more satisfied the point j.

> Suppose j' is similar to j and $d(j', \varphi(j')) \ll d(j, \varphi(j))$.

j is justified to feel unfairly treated



Motivational Example

- \succ The points of C correspond to users of an e-commerce site.
- $\succ d(j,j')$ measures how similar the profiles of j and j' are.
- → The website wants to choose k representative users $S \subseteq C$ (according to some objective function) and construct an assignment $\varphi: C \to S$.
- > User j will receive recommendations based on $\varphi(j)$'s profile.
- > The smaller $d(j, \varphi(j))$ is the more relevant the recommendations j receives.
- ▶ If *j* considers *j*' as similar to itself, then it perceives $d(j', \varphi(j')) \ll d(j, \varphi(j))$ as unfair treatment.

α -Equitable k-Center

Introduced by Chakrabarti et al. ("A New Notion of Individually Fair Clustering: α-Equitable k-Center" – AISTATS 2022)

- Every point *j* has a set of other points $S_j \subseteq C$ that it perceives as similar to itself
 - This is how similarity is modeled in this work
 - \blacklozenge Has advantages over the modeling with the ψ values: more easily constructable
- \succ We are also given a value $\alpha \geq 1$.

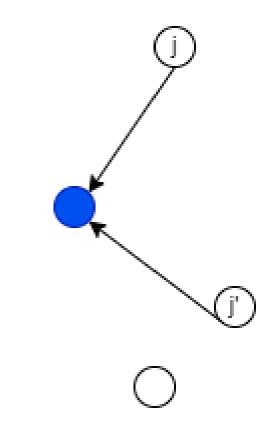
Ask for $S \subseteq C$ ($|S| \le k$) and assignment $\varphi: C \to S$ that minimize the k-center objective $\max_{j \in C} d(j, \varphi(j))$.

Fairness Constraint: For every $j \in C$ and $j' \in S_j$ ensure that $d(j, \varphi(j)) \leq \alpha \cdot d(j', \varphi(j'))$ The smaller α is the smaller $\frac{d(j,\varphi(j))}{d(j',\varphi(j'))}$ remains

The parameter α

> The smaller α is the smaller $\frac{d(j,\varphi(j))}{d(j',\varphi(j'))}$ remains.

- ***** α = 4
- ***** α = 1
- > A value of α close to 1 would give the most equitable/fair solution
- > For what values of α is the problem well-defined?
 - For a < 2 there exist instances that admit no feasible solution
 - ♦ For $a \ge 2$ we can always find a feasible solution



The results of Chakrabarti et al.

A very efficient algorithms that returns a solution of cost $5(R^* + R_m)$ R^* is the value of the optimal solution $R = \max d(i, i')$

 $\mathbf{k}_m = \max_{j \in \mathcal{C}, j' \in \mathcal{S}_j} d(j, j')$

> When d is a good estimate of similarity: $R_m = O(R^*)$

 \succ Under some mild conditions on the sets S_i the algorithm has bounded PoF

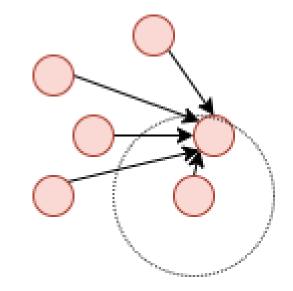
Notions of Individual Fairness in Clustering that do not follow the Dwork et al. paradigm

A Center in my Neighborhood

 Suppose we want to solve a classical k-clustering problem on a set of points C
 ◆Find S⊆C (|S|≤k) and assignment φ:C→S that ∑_{j∈C} d(j,φ(j))^p is minimized

 Even though the global objective function might be minimized, individual points may have different requirement in terms of d(j,φ(j))
 Recall the vaccine site allocation example.

Each j has a value r_j , and we should make sure that $d(j,\varphi(j)) \le r_j$



Results

Jung et al. ("A Center in Your Neighborhood: Fairness in Facility Location" – FORC 2020) introduced the problem

Important result: Even finding a feasible solution to the problem is NP-hard.

- > Goal: Find (α, β) -bicriteria algorithms:
 - $\sum_{j \in \mathcal{C}} d(j, \varphi(j))^p \leq \alpha \cdot \text{OPT}$
 - $d(j,\varphi(j)) \le \beta \cdot r_j$ for every j
- > A series of papers gave increasingly better results:
 - 1) Mahabadi and Vakilian ("Individual Fairness for k-Clustering"- ICML 2020). (O(p), 7)-bicriteria
 - 2) Chakrabarty and Negahbani ("Better Algorithms for Individually Fair k-Clustering" NeurIPS 2021) $(2^{1+\frac{2}{p}}, 8)$ -bicriteria
 - Vakilian and Yalçıner ("Improved Approximation Algorithms for Individually Fair Clustering" AISTATS 2022) (16^p, 3)-bicriteria

Individual Fairness in Clustering with Outliers

- $\succ \operatorname{Pick} S \subseteq \mathcal{C} \text{ with } |S| \leq k$
- \triangleright Pick $\mathcal{A} \subseteq \mathcal{C}$ with $|\mathcal{A}| \geq m$ (points to be clustered)
- > Being an outlier is disadvantageous!!!
- > We have seen how to protect against demographic bias
- >What can be interpreted as bias against individuals?

Deterministically be chosen as an outlier in every computed solution

Randomization saves the day: A lottery model for individually fair clustering with outliers

▶ For each $j \in C$ we are given a value $p_j \in [0,1]$

 \succ We want a distribution \mathcal{D} over solutions (S, \mathcal{A}) such that:

- **1)** For every (S, \mathcal{A}) drawn from \mathcal{D} we have $|S| \leq k$ and $|\mathcal{A}| \geq m$.
- $\textit{2)} \Pr_{(S,\mathcal{A})\sim\mathcal{D}}[j\in\mathcal{A}] \geq p_j \text{ for every } j\in\mathcal{C}$
- 3) Some objective is minimized
- > We avoid scenarios where certain points are deterministically chosen as outliers
- \succ Through the values p_i we can capture a plethora of fairness concepts:
 - **\diamond** Equitable treatment: p_j is the same for all points
 - * Preferential treatment: Points in greater need of service get a higher p_j value

Results

> The problem has only been studied under the k-center objective.

It was introduced by Harris et al. ("A Lottery Model for Center-Type Problems With Outliers" – APPROX-RANDOM 2017)

> Harris et al. gave a pseudo 2-approximation algorithm.

♦ In every solution drawn from D the coverage guarantee is $(1 - \varepsilon)m$

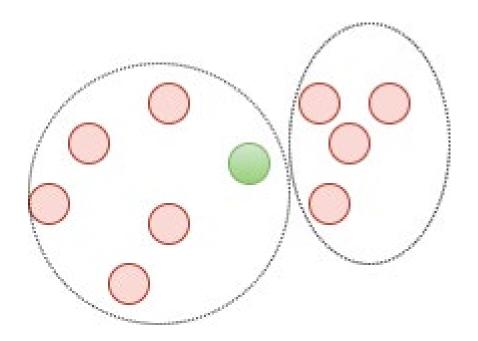
$$\stackrel{\bullet}{\bullet} \Pr_{(\mathbf{S},\mathcal{A})\sim\mathcal{D}}[\mathbf{j}\in\mathcal{A}] \geq (1-\varepsilon)\mathbf{p}_{\mathbf{j}}$$

Anegg et al. ("A Technique for Obtaining True Approximations for k-Center with Covering Constraints" – IPCO 2020) gave a true 4-approximation algorithm.

Fairness based on average distance to the points in your cluster

Motivational Example:

- Suppose a company wants to cluster its employees into k groups, based on their performance rating for some specific year.
- Let's assume that people in the first cluster will receive the highest amount of raise, the people in the second cluster the second highest raise, and so on.
- Consider some employee X placed in some cluster C. Let C_X be the average distance of X to the rest of the points in C.
- ✤ If there exists cluster W, with W_X be the average distance of X to the of the points in W, such that $W_X \leq C_X$, then X would arguably feel unfairly treated



Formal Definition and Results

➢ Given a set of points C, partition it into k sets C₁, ..., C_k such that:
♦ For every i ∈ [k] and each j ∈ C_i, ¹/_{|C_i|-1} Σ_{j'∈C_i} d(j, j') ≤ ¹/_{|C_{i'}|} Σ_{j'∈C_{i'}} d(j, j') for all i' ≠ i

➢ The problem was introduced by Kleindessner et al. ("A Notion of Individual Fairness for Clustering" − Arxiv 2020).

> Main result: For $k \ge 2$, it is NP-hard to decide if such a clustering exists

> When the metric space is the Euclidean line, the problem can be solved efficiently.